Hybrid Applications

Fat client applications accessing remote data via HTTP
By:

Kevin J. Cully

Cully Technologies, LLC

President

http://www.cullytechnologies.com
http://www.cullytechnologies.com/presentations
INTRODUCTION

This presentation draws strongly from the following article from West-wind: http://www.west-wind.com/presentations/wchttp.htm and is based on the Web Connection product.

Everyone has been caught up in web development. HTML, ASP, Cold Fusion, CGI, Perl, and other web centric technologies were new, exciting, and simple. Simple but with easy distribution.

We’ve grown in experience, extended our abilities, and we’re seeing the issues a bit clearer now. Thin client applications often fall short on user interface and control. Fat client applications don’t scale well and are difficult to distribute and update.

A hybrid application hopefully takes advantages of the strengths of each approach. If your requirements are for a rich user interface but allow for centralized data, a hybrid application paradigm is just the ticket.

One thing to keep in mind, though: Although you are not using HTML to display the output, you still need a backend Web application as discussed in previous Web articles. You still need to run a Web server and some backend software such as Web Connection, or Active Server Pages to provide the server portion of your application. To demonstrate the correlation in the data transfer, we allow for conditionally either sending back HTML pages or a XML document.

THE WEB APPLICATION

I’ve started by creating a typical web application with query, list, and detail functionality.

Following is a screen capture of the Web Connection application that accepts our web hits from both the browser and the hybrid application. You can see that the hit times are very modest.

[image: image1.jpg](411596 - Web Connection Yersion 3.65.

07:10:09 we.dl HybridProcess~-CustomerQuery - 0,240
07:10115 vl ybrocess~CutomerQuery -0.080
07:10:18 we.di HybridProcess~-CustomerQuery - 0.050
0711022 e dlyerosesonc ool s samer
07:10:26 we.di HybridProcess~-CustomerDetai&Customer D=

@ processing Request el Status Ext

Here’s a typical query screen in a browser. I’ve already typed in my criteria and pressed the “Submit” button, retrieving every customer where their customer name begins with “M”. Notice that in this instance, we have chosen to have the output sent back to us as HTML and not XML. More on this later.

[image: image2.jpg][bie et you Fooss Iob teb

| ok - > - @ [4| Qerch (iravortss Brimory | B Lh

| s [s ocanost HYBRID e dPHybrighrocess-CustomerQuery =] @0 |Junks |

I Hybrid Application :: Customer Query

| Output:

& HIML

IS | S o] \
|

Submit | Peset

Magazzene Alementare Reunete [Giovanni Rovelli _[faly.

[Maison Dewey. Catherine Dewey |Belgium |1l L
Mete Paie arde Uean Fresniere [Canada [HTML
Morgenstem Gesundkost [Alexander Feuer [Germany [[11i L

[vociriraret

When we click on the “Maison Dewey” link in the HTML, it takes us to the detail page that not only shows us the detail of the customer information, it’s also displaying the order history.

[image: image3.jpg]rosoft Internet Explorer EIEE
| Eio £t You Faortes Toob teb \
ek~ » - @ [0 | Querch [revertes Grisery | By & il - @

Adcress [E1 =] P [Junks 7|

o

I
[

Customer Detail

Hybrid Application
T I (1<ison Devwey

Contact Catherine Dewey
Sales Agent

Address Rue Joseph-Bens 532
Bruxelles B-1180
Belgium

e R
[EEn

95569 [fue doseph Bens 532
Praares 51185 Baghum
asor bowe
10643 |08/28/37 12:00:00 AM [09/25/37 12:00:00 AM |08/29/97 12:00:00 AM |$6.20 |Rue Joseph- Bvens 532
Praares o118 agum

05/07/97 12.00:00 AM [06/04/97 12:00:00 AM 05/09/97 12:00.00 AM

10760 12/01/97 120000 AM (12/29/97 12:00:00 AM [12/10/87 12.00.00 AM [§15554 E:fjg::s}%::a‘z
s 3.4150 begium
10892 |02/17/98 120000 AM (03/17/98 12:00:00 AM [02/19/98 12.00.00 AM [§120.27 E:fjgsfss %;; w2
s 14150 begium
10895 |12/19/98 120000 AM 0319/96 12:0000 AM 12/27/98 120,00 AM [§32.45 E:fjgsfss %;; w2
ches 4150 begium
10978 (032698 120000 AM 04723/96 12.00:00 AM [04/23/98 1200.00 AM [§32.62 E:fjgsfss %;; 2
s 4150 begium

aison Dawey

A LOOK AT THE XML OUTPUT

If we, from the Customer Query screen, request that we receive our information in XML format from our Internet Explorer browser, we receive it in this format. A special note should be made that we aren’t sending back this information with a DTD (Document Type Definition). A DTD contains information regarding the structure of the XML document. In the case of a data based XML document, the DTD would contain information that would allow the data to be reconstructed into a new data structure. DTDs are rapidly giving way to ‘schemas’. Web Connect also can generate these schemas. Because we don’t have the DTD or a schema tied to this XML, this mandates that the receiving application knows something about the data in order to reconstitute it.

[image: image4.jpg]2 http://localhost/HYBRID,/we.dll?HybridProcess~CustomerQuery =10/ x|

e =
ook > O [| Qeeech fatrovetes oy | B B W~ D

eress [&] httpiflocahost/HYBRID we.dIPHybricProcess~CustomerQuery] @oo ||unis 7

| =
IEE

<customerid>MAGA</customerid>

<ceontact>Giovanni Rovelli</coontacts

<cconttitle>Marketing Manager</ccontitle>
Ludovico il Moro
<ccity>Bergamo</ccity>
<cregion>NULL</cregion>
<cpostal>24100</cpostal>
<ccountry>Italy</coountry>
<cphone>035-640230</cphone>
<cfax>035-640281</cfax>
</Customers

- <Customer>
<customerid>MAIS</customerids
<ccompany>Maison Dewey</ccompany>
<ceontact>Catherine Dewey</ccontact>
<ceonttitle>Sales Agent</ccontitle>

b
<ceity>Bruselles</ccity>
<cregion>NULL</cregion>
<cpostal>B-1180</cpostal>
<ceountry>Belgiume/ccountry>
<cphone>(02) 201 24 67</cphone>
<cfax=(02) 201 24 68</cfax>

</Customers.

- <Customer>
<customerid>MERE</customerids

[ETooe [Bt

I

Choosing the detail view with the XML output option generates this XML result. This XML document includes two different data sets: the parent and child information. In this instance it’s the customer record and all of the relating order records.

[image: image5.jpg]B o ton Famies 1o tb

iProcess~CustomerDetail~CustomerID MAISEEI =] 1|

Acvess [vero,

| ok - o Q[2| Qe Gireenes grmony | B 5 - 0
|

=] @ [Juns)

<7l version="1.0" 7>

- <Customer>
<customerid>MAIS</customerid>
<ccompany>Maison Dewey</ccompany>
<ceontact>Catherine Dewey</ccontact>
<ceonttitle>Sales Agent</ccontitle>

b
<ceity>Bruxelles</ccity>
<cregion>NULL</cregion>
<cpostal>B-1180</cpostal>
<ceountry>Belgiums/ccountry>
<cphone>(02) 201 24 67</cphone>
<cfax=(02) 201 24 68</cfax>

</Custormers.
</c_Customer>
- <c_Orders>
- <Orders>
<orderid>10520</orderid>
<customerid>MAIS</customerid>
<employeeid>5</employeeid>
97-05-07

<shipuia>2</shipvia>
<freight>66.6900</freight>
<shipname>Maison Dewey</shipnames>

p
<shipcity>Bruxelles</shipcity>
<shipregion />

[[B iowinwanet %

FAT CLIENT HYBRID APPLICATION

Our client application is going to simulate a browser when it communicates back to the web application. Web Connection makes this almost trivial. The fat client application allows for a richer experience with tighter validation control.

Our application consists of a very simple query, list, and detail view of our data. Similar to the web based application, we’re querying for the information where the Company Name begins with an ‘M’.

[image: image6.jpg]1B

s | s

Cornpany Narne: [
Cantact Name:
County:

When the Query button is pressed, a server hit is executed, resulting in an XML document getting passed back to the application. This XML is then converted back into a VFP cursor, bound to a grid on the list tab and displayed.

Here’s our data, bound to the grid. This information is the same data that was served as HTML and XML over the web in a browser.

[image: image7.jpg]ORG forgenstern Gesundkost |Alexander Feuer arketing Assistal

To view the detailed information, click onto one of the records and then click the ‘Detail’ tab.

Once the ‘Detail’ tab is clicked on, our second server hit is executed. The response includes our combined XML document that is parsed back into VFP cursors. The ‘Orders’ grid is then bound to the orders cursor. The information is then displayed.

[image: image8.jpg]List

=0l

Deta
custorrer 1o [WAS
T

Company [iaison Dewey
Contact [Catherine Dewey
Title Sales Agent
Address [Rue Joseph-Bens 532
Era e
county [geigum
Phone [onzoizee7 | Fax|@p2oiz4es
ordsiia edda_[ehippeddal [reight =

10529
10649

8281997

10760
10892

orseraateJreaur
[osi0riige7 1[oer0sngsT
CasasT
[12i0t15e7 1[1228n887 1
lazrnase 1o

82071997
1211071987
0211971998

31711995 1

T

This fat client application allows for the changing of the data. Once the user makes the changes to the Company information, they can click on the ‘Save’ button. The record is bundled up into an XML document and posted back to the server. This time, we’ve included a DTD for demonstration purposes. (refer to the code page with the method: CompanyDetailSave for the appropriate code.)
WEB SERVER APPLICATION CODE

The server application accepts form variables whether taken from the HTML posting or our client application. We then gather it all up and execute our select against our VFP tables. I’ve written the select statement so that it is easily converted into a MS SQL Server style select. If using SQL Server, just concatenate the information into a string and use pass-through to execute the select for you.

[image: image9.jpg]FUNCTION CustomerQuery

I=|

ALLTRIN (UPPER (REQUEST. FORMN (' cCompany')))
ALLTRIN (UPPER (REQUEST. FORN {'cContact ')))
ALLTRIN (UPPER (REQUEST. FORN [’ cCountry")))
ALLTRIN (UPPER (REQUEST. FORM [’ Output']} |

D

LIKE '] + lcCompany + [%']
LIKE '] + lcComtact + [%']
LIKE '] + lcCountry + [%']

0
leWhere + [AND UPPER(cCompany)
leWhere + [AND UPPER(cContact)
cUhere + [AND UPPER(cCountry)

lellessageToUser = [
ELSE
lellessageTolser = [Please enter some criteria and press the SUBMIT button.]
ENDIF
SELECT * FRON thlCustomers ;
VHERE 1=1 slcWhere ;
ORDER BY 2,3
INTO CURSOR c_Customers

IF leoutput = [XHL]
L = CREATE |"wuXHL")
LeExpandedHTHL = []

SELECT _Customers
1cExpandsdHTHL = lcExpandedHTHL + 1oXML.CursorToXHL('c Customers','Customer!,2)
ITHL = 1oXIL. EncodeXIL (T

ELSE
leTemplate = FilezVar (' HTHL\CustomerQuery.htm')
LeExpandedHTHL = THIS.ExpandHTHL { LoTemplate]

ENDIF

Response.Fastirite (lcExpandedHTHL)

THIS.CLoseDBF (' c_Customers'

ENDFINC

o

Notice that if the lcOutput is equal to the string ‘XML’ then we convert the VFP cursor to a XML string and pass that as the result back to the requestor, whether it is a browser or an application.

The CustomerDetail method (function) combines two XML documents into one if the resulting output is requested to be XML. This only takes a few more lines of code to custom add our XML header.

[image: image10.jpg]hybridprocess.prg
FUNCTION CustomerDetail

leCustomerID = UPPER (REQUEST.QueryString (' CustomerID'))
lcoutput = UPPER (REQUEST.QueryString('Output'])
IF NOT ENPTY(lcCustamerID)

SELECT * FRON thlCustomers ;

WHERE CustomerID = lcCustomerID ;

ORDER BY 2,3

INTO CURSOR c_Customer
llsuccess = _TALLY > 0

IF liSuccess
(c_orders',

1lSuccess = THIS.
ENDIF
IF leoutput = [¥ML]
LoXHL = CREATE ("wuXiL")
LeExpandedHTHL = [

SELECT ¢_Customer

LeExpandedHTHL = leExpandedHTHL +
10XHL. CraateCursorXiL (1o Customer !, | Customer
SELECT c_orders
LeExpandedHTHL = leExpandedHTHL +
10XHL. CraateCursorXL 1o Orders' , 'Orders’, 2

o
LeExpandeat
| <Hybridipp>' + CR +
CR + lcExpandedHTHL + ;

0125] ¥ CR ¥

1 versio

' </Hybridipp>’
ELSE
leTemplate = FilezVar (' HTHL\CustomerDetail.hem')
LeExpandedHTHL = THIS.ExpandHTHL | LoTenplate]
ENDIF

Response.Fastirite (lcExpandedHTHL)
THIS.CloseDBF (' c_Customer ')
THIS.CloseDBF (' c_Orders')

ELSE
THIS . CustomerQuery ()

.2

add XL header and add the closing DocRoot element

=loix|

FAT CLIENT APPLICATION CODE

Our client application instantiates the free class library wwIPStuff to conduct our web communications. All we are left to do is specify the URL, add some post variables, and tell it to go. As with most HTTP communications, our response comes to us as a string. If the string is XML, we create data out of it and display. If the response contains an error, then we display that information raw in a MessageBox. Notice that our VFP form handles all of our display particulars.

[image: image11.jpg]FUNCTION CompanyQuery
LPARMIETER teTargetCursor, teCompany,
0CAL 11Retva.

=lox|

=
tecountry

+//1ocalhost/hybrid/ve. dLL2hybridprocess-custonerauery”
10IP = CREATE ["wuIPStuff”)

tecontact,

10TP. AddPostKey ["cCompany”,
10TP. AddPostKey ["cContact”,
10TP. AddPostKey ["cCountry”,
10TP. AddPostKey ("output”,

teCompany)
tecontact]
teCountry)
rxEmy)

WAIT UINDOV "Retrieving information from " + CHR(13) + LcURL NOWAIT

LeXHLResponse = 1oTP.httpget (1clrl)

WAIT CLEAR

IF NOT EMPTY(AND ATC([7XHL],
=CloseDBF ('c_Customers']

>0
*% I'm cheating here and creating a blank writahle cursor
#%% off of the hase table.

THIS. 1

ursor (¢,
Lisuccess =

Baa practice!

N
.oXHL.EMLTaCursor (
IF llsuccess
sE
co
11Retval
ELSE

'e_Customers')
LECT ¢_Customers
ToP

ENDIF

ENDIF
RETURN 11Retval
ENDFINC

The CompanyDetail method is expecting a response containing two XML nodes in it. This takes just a bit more code to set the nodes and then convert them into data.

[image: image12.jpg]TUNCTION CompanyDetai
LPARMIETER teTargetCuraor, teCustomerId
OCAL 11Rerval

/1ocalnost/hybria/we.dllo" + ;

"§Customer ID:
LOCAL loIP
10IP = CREATE|"wuIPStuff”
WAIT UINDOV "Retrieving information from " + CHR(13
LeXHLResponse = 10TP.htepget (1eUrl
WAIT CLEAR
IF NOT ENPTY(AND ATC([7XHL], >0
#%% I'm cheating here and creating a blank writable cursor
#%% off of the hase table. Bad practice
THIS . Createlriteablecursor 'c_CustDetail', 'thlCustomers'
Lisuccess = THIS.ParseXNLNode (lcXNLResponse, '/Hybridipp/c_Customer'
IF llsuccess
SELECT c_CustDetail
G0 ToP
ENDIF
IF llsuccess

" + TRANSFORI (tcCustomer ID:

+ LeURL NOVAIT

*%% I'm cheating here and creating a blank writable cursor
%% off of the base table. Bad practice
THIS.CreateUriteableCursor ('c_Custorders’, 'thlorders'
11Success - THIS.ParseXNiNode [IcXNLResponae, '/Hybridipp/c_Orders’
IF lisuccess

SELECT _Custorders

Go ToP
11Retval
ENDIF
ENDIF
ENDIF
RETURN 11Retval

=lox|

To post our changed information, we create XML out of our data, this time with a DTD! We take that XML document and add it as a post variable and then post the information. In this instance, the response is very simple so we display it in a MessageBox.

To generate a schema instead of a DTD only required that you add the following lines:

loXML.nCreateDataStructure = 1

loXML.cSchemaName = 'CustomerDetail'

[image: image13.jpg]= |

FUNCTION CompanyDetailSave
LOCAL LlRetVal
L1Retval

IF USED('c_Custbetail']
ELECT c_CustDetail

Go ToP

1eURL = "http://localhost/hybria/ue.dllohybridprocess-CustonerSave-" +
"gCustomer ID=" + TRANSFORM (c_CustDetail.CustomerID

L1oXML = CREATE ("wnXnL"

LoXNL.nCreateDatagtructure =

6 ldd & DD to the XHL
leXMLCustDetail = loXNL. CursDrTB}{HLL ©_custbetail’,

‘Customer',2)

LOCAL loIP
10IP = CREATE{"wuIPStuff”:
) " i, 1

+ LeURL NOVAIT

WAIT UINDOV "Posting information to " + CHR(13
lcResponse = loIP.httpget (leUrl

WAIT CLEAR
~HESSAGEEOX (leResponse, 0432,

PROGRAN()]

WEB APPLICATION SAVE CODE

On the server side of things, we retrieve our CustomerID and the XML. If we can find the customer, we convert the XML into data, scatter that to a memory object, select the target table and then gather from that same memory object. Notice we’re not handling the creation of a new record, but that would just involve inserting the new record instead of updating an existing record. Also notice that since the XML contains a DTD, we don’t need the target cursor before we turn the XML into data. The DTD allows for the creation of the cursor and then the data is dumped into it.

[image: image14.jpg]idprocess

prg
FUNCTION CustomerSave
LeCustomerI]

LeXMLCustDetail

-0/ x|
UPPER (REQUEST. QueryString (' CustomerID'))
REQUEST. Form (' cXHLCustDecail’
IF NOT ENPTY 1cCustomer I
IF SEER{lcCustomerID, [thiCustomers], [CustomerID]
THIS . CLoseDBF ('c_ CustomerDecail’
LocaL lox
Lisuccess =

Logmt i chny e
&

SELECT ¢_CustomerDera.
o

«
IF liSuccess AND USED('c_CustomerDetail')

1cResponseHTHL = [SUCCESS: Record saved:] +
TRANSFORI (1cCustomer ID:
ELSE
LcResponseHTHL = [ERROR: Could not convert XHL to cursor.] +
CHR{13) + 10XNL.cErrorlisy
ENDIF
ELSE
lcResponseHTHL = [ERROR: Could not find CustomerID:] +
TRANSFORI (1cCustomer ID:
ENDIF

LeResponseHTHL
ENDIF

[ER: ustomerID is empty:] +
v FORHUcCus\:BmErID)
Response.Fastirite (1cResponseHTHL
THIS. CLoseDBF (' _Custor

. Customer!
THIS. CloseDBF (' c_Orders
ENDFINC

SUMMARY

I hope that I’ve demonstrated how a hybrid application might be a powerful addition to your application arsenal. Not every application will fit into either the ‘web’ category or the ‘fat client’ category. It’s all about using the right application of technology for the requirement at hand.

Visual FoxPro continues to be one of the best tools for accessing data EVER! You can see that in regards to its easy transition to the web.

11/15/2001
Hybrid Applications.doc
Page 1 of 17

